

ARCH 230: STRUCTURES 1

Originator

macosta

Co-Contributor(s)

Name(s)

Bitanga, Bert

Justification / Rationale

Due to the upcoming 2+3 partnership with Cal Poly Pomona, this course is required for students to complete within the first 2 years.

Effective Term

Fall 2022

Credit Status

Credit - Degree Applicable

Subject

ARCH - Architecture

Course Number

230

Full Course Title

Structures 1

Short Title

STRUCTURES 1

Discipline

Disciplines List

Architecture

Modality

Face-to-Face 100% Online Hybrid

Catalog Description

Theories of structural design and the relationship of structure to form, function and economics. Analysis of structural systems including statics, strength of materials and structural properties as well as the demonstration of forces and stresses.

Schedule Description

Theories of structural design and the relationship of structure to form, function and economics. Prerequisite: MATH 005 and PH 002A

Lecture Units

2

Lecture Semester Hours

36

Lab Units

1

Lab Semester Hours

51

In-class Hours

90

Out-of-class Hours

72

Total Course Units

3

Total Semester Hours

162

Prerequisite Course(s)

MATH 005 and PH 002A

Required Text and Other Instructional Materials

Resource Type

Book

Author

Silver, Pete, McLean, Will and Evans, Peter

Title

Structural Engineering for Architects: A Handbook

City

London

Publisher

Lawrence King Publishing, Ltd.

Year

2014

College Level

Yes

Flesch-Kincaid Level

14.6

ISBN#

9781780670553

Resource Type

Book

Author

Ching, Francis D. K., Onouye, Barry S. and Zuberbuhler, Douglas

Title

Building Structures Illustrated: Patterns, Systems and Design

Edition

2nd

City

New Jersey

Publisher

John Wiley and Sons, Inc.

Year

2013

Flesch-Kincaid Level

14.7

ISBN#

978-1-118-45835-8

Resource Type

Book

Author

Underwood, Rod and Chiuini, Michele

Title

Structural Design: A Practical Guide for Architects

Edition

2nd

City

New Jersey

Publisher

John Wiley Sons, Inc.

Year

2007

Flesch-Kincaid Level

14.4

ISBN#

978-0-471-78904-8

For Text greater than five years old, list rationale:

These textbooks are still relevant to this date and are the most current available.

Class Size Maximum

26

Entrance Skills

Apply mathematical concepts to calculate 2D and 3D properties for structural members.

Requisite Course Objectives

MATH 005-Apply facts about plane geometric figures to deduce the surface area and volume of three dimensional geometric figures.

Entrance Skills

Perform basic arithmetic with vectors.

Requisite Course Objectives

MATH 005-Perform basic arithmetic with vectors both graphically and via the use of the ai+bj form of the vectors.

Entrance Skills

Demonstrate the ability to prepare and analyze laboratory experiments using scientific methods.

Requisite Course Objectives

PH 002A-Demonstrate the ability to prepare and analyze laboratory experiments using scientific methods in the areas of mechanics, fluids, thermodynamics, sound and wave motion.

Entrance Skills

Utilize good problem solving techniques.

Requisite Course Objectives

PH 002A-Utilize good problem solving techniques in the areas of mechanics, fluids, thermodynamics, sound and wave motion.

Entrance Skills

Demonstrate an understanding of basic vector analysis.

Requisite Course Objectives

PH 002A-Demonstrate an understanding of basic vector analysis in the areas of mechanics, fluids, thermodynamics, sound and wave motion.

Course Content

- 1. Attendance & Participation
- 2. Exercises (individual and team assignments)
- 3. Weekly quizzes
- 4. Two mid-term exams (includes a short written component)
- 5. Final Exam (includes a short written component)

Lab Content

- 1. Application of skills and concepts learned during the lecture portion of this course.
- 2. Team & individual projects.

Course Objectives

	Objectives
Objective 1	Explain the magnitude and direction requirements for force-vectors and resultant force-vectors of multiple force-vectors originating from a single point in 2D and 3D.
Objective 2	Describe various structural systems, structural materials, and structural system/material based on structural performance and economics.
Objective 3	Illustrate forces in truss members based on truss graphical solutions.
Objective 4	Explain strength design allowable stress design (ASD) and load resistance factor design (LRFD).
Objective 5	Evaluate stress within structural members comparing actual stress to allowed stress.
Objective 6	Calculate specific geometric properties for various common structural member shapes.
Objective 7	Determine reactions for beam/column/wall structural combinations based on load location and load type.
Objective 8	Predict vertical and horizontal beam shear for steel and wood structural materials.
Objective 9	Demonstrated ability to calculate deflection in steel and wood structural members.
Objective 10	Design structurally with wood and steel.
Objective 11	Produce a variety of structural steel design configurations for beams, columns and steel connectors.
Objective 12	Produce a variety of structural wood design configurations for beams, columns, walls and wood connectors.

Student Learning Outcomes

	Upon satisfactory completion of this course, students will be able to:
Outcome 1	Calculate forces and loads on structures and structural members. Design structures that maintain structural stability and equilibrium.
Outcome 2	Demonstrated ability to recall and explain stress, strength and Load and Resistance Factor Design (LRFD) Design.
Outcome 3	Evaluate the structural performance of various materials used in buildings.

Methods of Instruction

Method	Please provide a description or examples of how each instructional method will be used in this course.
Lecture	Lectures are held in a typical classroom setting for face-to-face modalities.
	For hybrid or online modalities lectures will be held in the current Management Learning System (MLS).
	Lectures include: 1. Calculations on white board 2. Power Point (or equivalent). 3. Videos 4. Simulations
Demonstration, Repetition/Practice	Physical demonstrations with structural models to reinforce the material learned.

Methods of Evaluation

Method	Please provide a description or examples of how each evaluation method will be used in this course.	Type of Assignment
Other	Projects/Exercises (individual & team assignments).	In and Out of Class
Tests/Quizzes/Examinations	Weekly quizzes, Mid-term Exam & Final Exam (multiple-choice and short answer questions on structural design and the relationship of structure to form, function and economics)	In and Out of Class

Assignments

Other In-class Assignments

- 1. Draw a free body diagram of a simple point load beam spanning between two supports.
- 2. Calculate the size of a foundation footing based on a uniformity distributed wall load.
- 3. Determine force vectors for a simple truss.

Other Out-of-class Assignments

Assigned reading.

Grade Methods

Letter Grade Only

Distance Education Checklist

Include the percentage of online and on-campus instruction you anticipate.

Online %

50

On-campus %

50

Instructional Materials and Resources

If you use any other technologies in addition to the college LMS, what other technologies will you use and how are you ensuring student data security?

SkyCiv Structural Design Software will be used by the students to resolve structural design problems assigned for the lab portion of this course. This software can be used online by the students.

If used, explain how specific materials and resources outside the LMS will be used to enhance student learning.

This software will allow the student to resolve structural design problems by using graphic representations of structural members and the loads being applied to them.

Effective Student/Faculty Contact

Which of the following methods of regular, timely, and effective student/faculty contact will be used in this course?

Within Course Management System:

Chat room/instant messaging
Discussion forums with substantive instructor participation
Online quizzes and examinations
Private messages
Regular virtual office hours
Timely feedback and return of student work as specified in the syllabus
Video or audio feedback
Weekly announcements

External to Course Management System:

Direct e-mail
Posted audio/video (including YouTube, 3cmediasolutions, etc.)
Synchronous audio/video
Teleconferencing
Telephone contact/voicemail

For hybrid courses:

Field trips Orientation, study, and/or review sessions Scheduled Face-to-Face group or individual meetings

Briefly discuss how the selected strategies above will be used to maintain Regular Effective Contact in the course.

These strategies will enhance the learning opportunities and provide students with a variety of ways in which active communication can be achieved.

Other Information

Comparable Transfer Course Information

Campus

California State Polytechnic University, Pomona

Course Number

ARC 3210

Course Title

Structures 1

Catalog Year

2021-2022

Campus

California Polytechnic State University, San Luis Obispo

Course Number

ARCE 211

Course Title

Structures 1

Catalog Year

2021-2022

MIS Course Data

CIP Code

15.0101 - Architectural Engineering Technology/Technician.

TOP Code

020100 - Architecture and Architectural Technology

SAM Code

C - Clearly Occupational

Basic Skills Status

Not Basic Skills

Prior College Level

Not applicable

Cooperative Work Experience

Not a Coop Course

Course Classification Status

Credit Course

Approved Special Class

Not special class

Noncredit Category

Not Applicable, Credit Course

Funding Agency Category

Not Applicable

Program Status

Stand-alone

Transfer Status

Transferable to CSU only

General Education Status

Y = Not applicable

Support Course Status

N = Course is not a support course

Allow Audit

No

Repeatability

No

Materials Fee

Νo

Additional Fees?

No

Approvals

Curriculum Committee Approval Date

11/18/2021

Academic Senate Approval Date 12/09/2021

Board of Trustees Approval Date 01/21/2022

Chancellor's Office Approval Date 04/20/2022

Course Control Number CCC000631135