

CH 001B: GENERAL CHEMISTRY II

Date Submitted:Tue, 08 Oct 2019 22:16:58 GMT

Originator jciurash

Co-Contributor(s)

Name(s)

Guinn, Robert

Justification / Rationale Update SLOs

Effective Term Spring 2020

Credit Status Credit - Degree Applicable

Subject CH - Chemistry

Course Number 001B

Full Course Title General Chemistry II

Short Title GEN CHEMISTRY II

Discipline

Disciplines List

Chemistry

Modality

Face-to-Face

Catalog Description

This is the second course of a two-semester sequence covering the basic principles and concepts of chemistry with emphasis on chemical calculations. Inorganic chemistry is stressed, and the material includes a discussion of thermodynamics, reaction kinetics, chemical equilibrium, acid-base equilibria in aqueous solutions, electrochemistry. There is a brief introduction to organic, biological and nuclear chemistry. The laboratory part of the course complements the lectures and also includes one experiment on qualitative analysis of cations and anions.

Schedule Description

This course is the second of a two-semester sequence covering the basic principles and concepts of chemistry with emphasis on chemical calculations. Prerequisite: CH 001A IGETC: 5A, 5C

```
Lecture Units
4
Lecture Semester Hours
72
Lab Units
1
Lab Semester Hours
```

54

In-class Hours

Out-of-class Hours
144

Total Course Units 5 Total Semester Hours 270

Prerequisite Course(s) CH 001A

Required Text and Other Instructional Materials

Resource Type Book

Author

Beran, J.A.

Title

Laboratory Manual for Principles of General Chemistry

Edition

10th

City

New York, NY

Publisher John Wiley Sons Inc.

Year

2014

College Level

Yes

Flesch-Kincaid Level

ISBN # 9781118621516

Resource Type Book

Author Jesperson, N.D., Brady, J.E. Hyslop, A.

Title Chemistry: The Molecular Nature of Matter

Edition

7th

City New York, NY

Publisher

John Wiley Sons Inc.

Year 2015

College Level

Yes

Flesch-Kincaid Level

ISBN # 9781118516461

Resource Type

Web/Other

Description

Selected articles from: J. Chem. Education, New Scientist and Discover

Class Size Maximum

24

Entrance Skills Describe the different forms of matter.

Prerequisite Course Objectives

CH 001A-Describe the kinetic molecular theory of matter, states of matter and use the gas laws in calculations.

Entrance Skills

Describe atomic structure to the level of atomic orbitals.

Prerequisite Course Objectives

CH 001A-Describe atomic structure to the level of atomic orbitals and explain the relationship to periodicity. CH 001A-Describe the shapes of molecules in terms of valence bond theory, hybrid orbitals and molecular orbitals.

Entrance Skills

Explain the relationship between electronic structure and periodicity.

Prerequisite Course Objectives

CH 001A-Describe atomic structure to the level of atomic orbitals and explain the relationship to periodicity.

Entrance Skills

Distinguish between different types of chemical bonds and the shapes of molecules in terms of valence bond theory, hybrid orbitals and molecular orbitals.

Prerequisite Course Objectives

CH 001A-Describe atomic structure to the level of atomic orbitals and explain the relationship to periodicity. CH 001A-Distinguish between different types of chemical bonds. CH 001A-Describe the shapes of molecules in terms of valence bond theory, hybrid orbitals and molecular orbitals.

Solve problems in stoichiometry.

Prerequisite Course Objectives

CH 001A-Solve problems in stoichiometry.

Entrance Skills

Recognize and describe the different varieties of chemical reactions, including balancing REDOX equations.

Prerequisite Course Objectives

CH 001A-Recognize and describe the different varieties of chemical reactions, including balancing REDOX equations.

Entrance Skills

Describe the kinetic molecular theory of matter, states of matter and use the gas laws in calculations.

Prerequisite Course Objectives

CH 001A-Describe the kinetic molecular theory of matter, states of matter and use the gas laws in calculations.

Course Content

- 1. Thermodynamics.
- 2. Reaction kinetics and mechanisms.
- 3. Chemical equilibria relating to mass action laws, acids and bases, pH and buffers, solubility.
- 4. Electrochemistry.
- 5. Chemistry of selected representative and transition elements.
- 6. Introductory organic and chemistry, emphasis on nomenclature and functional groups.
- 7. Introduction to biochemistry, emphasis on macromolecules.

Lab Content

- 1. Students will continue acquiring efficiency in performing REDOX, acid-base titrations using Vernier equipment.
- 2. Students will determine the rate law and activation energy
- 3. Students will perform an experiment on the thermodynamics of solubility and calculate enthalpy, entropy and Gibbs free energy and graph the data.
- 4. Students will do an experiment on electrochemistry using the Nernst equation
- 5. Students will perform qualitative analysis of the standard sub-groups of cations and selected anions.
- 6. Students will also become familiar with organic chemistry by synthesizing aspirin.

Course Objectives

	Objectives
Objective 1	Describe the laws of thermodynamics and compute energy changes in reactions.
Objective 2	Describe the kinetics of reactions, perform calculations using rate laws and describe basic reaction mechanisms.
Objective 3	Analyze the nature of chemical equilibria, the Law of Mass Action and perform calculations involving equilibria, weak acids and bases, pH, buffers and slightly soluble substances.
Objective 4	Predict the outcome of reactions based on the electrochemical activity series and perform related calculations.
Objective 5	Compare and contrast selected representative and transition elements.
Objective 6	Delineate simple organic and biochemical functional groups and their reactions.
Objective 7	Describe the nature of radiation and its measurement, balance nuclear equations and explain the process of fission and fusion and their relationship to binding energy.

Student Learning Outcomes

	Upon satisfactory completion of this course, students will be able to:
Outcome 1	Analyze data using kinetic, thermodynamic, and equilibrium calculations to draw plausible conclusions.
Outcome 2	Relate the macroscale observations of a reaction to microscale mechanistic concepts.
Outcome 3	Apply chemical terminology to provide explanations of observed chemical phenomena.

Outcome 4 Perform second semester laboratory experiments using modern chemical equipment safely and accurately.

Outcome 5 Design and carry out a process to solve a chemical problem experimentally.

Methods of Instruction

Method	Please provide a description or examples of how each instructional method will be used in this course.
Discussion	Classroom discussion to improve critical thinking.
Technology-based instruction	Use CANVAS
Participation	Solving problems in groups during lab and lecture.
Lecture	 Lecture presentations including visual aids. Handouts summarizing lecture material.
Laboratory	Laboratory work to give "hands-on" knowledge.

Methods of Evaluation

Method	Please provide a description or examples of how each evaluation method will be used in this course.	Type of Assignment
Written homework	The laboratory assignments will be graded for ability to follow directions and for clarity of presentation.	In and Out of Class
Mid-term and final evaluations	There will be a comprehensive final examination on the lecture material.	In Class Only
Tests/Quizzes/Examinations	Examinations including essay and multiple-choice questions and fill in the blanks.	In Class Only
Laboratory projects	Lab reports and lab practical. Each lab experiment is three hours long once a week.	In and Out of Class

Assignments

Other In-class Assignments

1. Complete all laboratory experiments in the manual.

Other Out-of-class Assignments

- 1. Read all relevant material.
- 2. Complete all assigned problems.
- 3. Complete all laboratory experiments in the manual.
- 4. Identify unknowns in the qualitative analysis laboratory section.

Grade Methods

Letter Grade Only

COD GE

C1 - Natural Sciences

CSU GE

B1 - Physical Science B3 - Laboratory Activity

IGETC GE

5A - Physical Science 5C - Science Laboratory

MIS Course Data

CIP Code 40.0501 - Chemistry, General.

TOP Code 190500 - Chemistry, General

Basic Skills Status Not Basic Skills

Prior College Level Not applicable

Cooperative Work Experience Not a Coop Course

Course Classification Status Credit Course

Approved Special Class Not special class

Noncredit Category Not Applicable, Credit Course

Funding Agency Category Not Applicable

Program Status Program Applicable

Transfer Status Transferable to both UC and CSU

C-ID CHEM 120S

Allow Audit No

Repeatability No

Materials Fee No

Additional Fees? No

Approvals

Curriculum Committee Approval Date 03/15/2019

Academic Senate Approval Date 03/14/2019

Board of Trustees Approval Date 04/10/2019

Course Control Number CCC000329814

Programs referencing this course

Environmental Science AS-T (http://catalog.collegeofthedesert.eduundefined?key=216/) Chemistry UC Transfer Pathway AS Degree (http://catalog.collegeofthedesert.eduundefined?key=274/)

Liberal Arts: Math and Science AA Degree (http://catalog.collegeofthedesert.eduundefined?key=29/) Biology AS-T Degree (http://catalog.collegeofthedesert.eduundefined?key=40/) Chemistry AS-T Degree (http://catalog.collegeofthedesert.eduundefined?key=41/) Geology AS-T Degree (http://catalog.collegeofthedesert.eduundefined?key=42/) Nutrition and Dietetics AS-T Degree (http://catalog.collegeofthedesert.eduundefined?key=7/) Chemistry AS Degree (http://catalog.collegeofthedesert.eduundefined?key=7/)